Towards Characterizing Securely Computable Two-Party Randomized Functions

نویسندگان

  • Deepesh Data
  • Manoj Prabhakaran
چکیده

A basic question of cryptographic complexity is to combinatorially characterize all randomized functions which have information-theoretic semi-honest secure 2-party computation protocols. The corresponding question for deterministic functions was answered almost three decades back, by Kushilevitz [Kus89]. In this work, we make progress towards understanding securely computable randomized functions. We bring tools developed in the study of completeness to bear on this problem. In particular, our characterizations are obtained by considering only symmetric functions with a combinatorial property called simplicity [MPR12]. Our main result is a complete combinatorial characterization of randomized functions with ternary output kernels, that have information-theoretic semi-honest secure 2-party computation protocols. In particular, we show that there exist simple randomized functions with ternary output that do not have secure computation protocols. (For deterministic functions, the smallest output alphabet size of such a function is 5, due to an example given by Beaver [Bea89].) Also, we give a complete combinatorial characterization of randomized functions that have 2-round information-theoretic semi-honest secure 2-party computation protocols. We also give a counter-example to a natural conjecture for the full characterization, namely, that all securely computable simple functions have secure protocols with a unique transcript for each output value. This conjecture is in fact true for deterministic functions, and – as our results above show – for ternary functions and for functions with 2-round secure protocols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Characterizing Complete Fairness in Secure Two-Party Computation

The well known impossibility result of Cleve (STOC 1986) implies that in general it is impossible to securely compute a function with complete fairness without an honest majority. Since then, the accepted belief has been that nothing non-trivial can be computed with complete fairness in the two party setting. The surprising work of Gordon, Hazay, Katz and Lindell (STOC 2008) shows that this bel...

متن کامل

A Quantitative Approach to Reductions in Secure Computation

Secure computation is one of the most fundamental cryptographic tasks. It is known that all functions can be computed securely in the information theoretic setting, given access to a black box for some complete function such as AND. However, without such a black box, not all functions can be securely computed. This gives rise to two types of functions, those that can be computed without a black...

متن کامل

On Secure Two-Party Computation in Three Rounds

We revisit the exact round complexity of secure two-party computation. While four rounds are known to be sufficient for securely computing general functions that provide output to one party [Katz-Ostrovsky, CRYPTO’04], Goldreich-Krawczyk [SIAM J. Computing’96] proved that three rounds are insufficient for this task w.r.t. black-box simulation. In this work, we study the feasibility of secure co...

متن کامل

Complete Characterization of Fairness in Secure Two-Party Computation of Boolean Functions

Fairness is a desirable property in secure computation; informally it means that if one party gets the output of the function, then all parties get the output. Alas, an implication of Cleve’s result (STOC 86) is that when there is no honest majority, in particular in the important case of the two-party setting, there exist functions that cannot be computed with fairness. In a surprising result,...

متن کامل

The All-or-Nothing Nature of Two-Party Secure Computation

A function f is computationally securely computable if two computationally-bounded parties Alice, having a secret input x, and Bob, having a secret input y, can talk back and forth so that (even if one of them is malicious) (1) Bob learns essentially only f(x, y) while (2) Alice learns essentially nothing. We prove that, if any non-trivial function can be so computed, then so can every function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017